Abstract
In the calculations of buildings’ thermal comfort, the input parameters are usually considered as strictly determined values. Numerous of them may be characterized by certain probability density functions. In the energy related problems, the uncertainty analyses are usually performed using the Monte Carlo method. However, this method requires multiple calculations and, therefore, may be very time-consuming. In the proposed work, two approaches are applied for the probabilistic studies: the stochastic perturbation method and the transformed random variables method. The stochastic analysis is based on the response functions and their derivatives with respect to all random input parameters. The relation between the thermal comfort and the input (random) variables have been calculated using the Energy Plus software. Afterwards, the response functions were estimated using the polynomial regression. The expected value and central moments of the response functions were calculated by means of the perturbation method and the transformed random variable theorem. The latter method allowed to obtain, using the same response functions, the implicit form of probability distributions function of the output parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.