Abstract
We formulate a method for representing solutions of homogeneous second-order equations in the form of a functional integral or path integral. As an example, we derive solutions of second-order equations with constant coefficients and a linear potential. The method can be used to find general solutions of the stationary Schrodinger equation. We show how to find the spectrum and eigenfunctions of the quantum oscillator equation. We obtain a solution of the stationary Schrodinger equation in the semiclassical approximation, without a singularity at the turning point. In that approximation, we find the coefficient of transmission through a potential barrier. We obtain a representation for the elastic potential scattering amplitude in the form of a functional integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.