Abstract

Systems whose specifications change abruptly and statistically, referred to as Markovian-jump systems, are considered in this paper. An approximate method is presented to assess the stationary response of multidegree, nonlinear, Markovian-jump, quasi-nonintegrable Hamiltonian systems subjected to stochastic excitation. Using stochastic averaging, the quasi-nonintegrable Hamiltonian equations are first reduced to a one-dimensional Itô equation governing the energy envelope. The associated Fokker–Planck–Kolmogorov equation is then set up, from which approximate stationary probabilities of the original system are obtained for different jump rules. The validity of this technique is demonstrated by using a nonlinear two-degree oscillator that is stochastically driven and capable of Markovian jumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.