Abstract

The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.