Abstract

SummaryThis paper investigates the static output feedback control problem for Markov jump systems subject to asynchronous mode information and deception attacks. A hidden Markov model is employed to observe the unmeasurable system mode. In this case, the asynchronous phenomenon between the controller and the original system is depicted. By using the mode‐dependent Lyapunov function, a sufficient condition is established such that the resulting closed‐loop system is stochastically mean square exponentially ultimately bounded under randomly occurring deception attacks and external disturbance. Based on this condition, the asynchronous static output feedback controller is designed in view of linear matrix inequalities. Finally, the effectiveness and superiority of the presented method are elaborated via a numerical example and a practical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.