Abstract

By means of a matching approach we study analytically the appearance of static and oscillating-modulus pulses in the one-dimensional quintic complex Ginzburg-Landau equation without nonlinear gradient terms. When considering nonlinear gradient terms the method enables us to calculate the velocities of the stable and unstable moving pulses. We focus on this equation since it represents a prototype envelope equation associated with the onset of an oscillatory instability near a weakly inverted bifurcation. The results obtained using the analytic approximation scheme are in good agreement with direct numerical simulations. The method is also useful in studying other localized structures like holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.