Abstract

Quantum dot cellular automata (QCA) is an upcoming nano-technology for its high speed and low power operation in the field of nano-science and nano-electronics. As QCA overcomes the drawbacks of CMOS technology, it has appreciable applications in quantum computation. There are thousands of designs of different logical circuits using QCA but there is no hazard free design of the logical circuits in the field of QCA. In a circuit, hazards always produce an unpredictable output which can be avoided. In this paper, both hazardous and hazard-free asynchronous sequential circuits are considered and compared in terms of kink energy. It is shown that hazard free asynchronous circuit performs better in terms of kink energy in the field of QCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.