Abstract

Models of motion perception usually assume that the visual system references spatial displacements to retinal coordinates, and not to three-dimensional coordinates recovered by a parallel process. The present studies investigated whether moving elements viewed in the context of a static random-dot stereogram could lead to the appearance of motion in depth. Observers judged the velocity of a monocular element translating horizontally in the stereo context as 'same as' or 'different to' that of a standard. Based on velocity constancy, if there was apparent motion in depth, the relative velocity judgments would yield a predictable pattern of errors. The first experiment compared two stereo contexts: a sloped surface versus a fronto-parallel plane at zero disparity. The results indicated an overall increase in the perceived velocity of the element moving in the sloped surface context. A similar pattern of results was found when surfaces differing in incline were compared. Experiment 2 explored the case of fronto-parallel planes at crossed and uncrossed disparities. Here depth differences did not systematically affect observers' judgments. It was concluded that in some cases motion analysis can be affected by three-dimensional disparity information and not by angular displacement alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.