Abstract

Structure, transport properties, and IR spectra including quantum effects are calculated for a flexible simple point charge model of liquid water. A recently introduced combination of a variational local harmonic description of the liquid potential surface and the classical Wigner approximation for the dynamics is used. The potential energy and interatomic radial distribution functions are in good agreement with accurate results from the literature and are significantly closer to experiment than predictions found from classical theory. The oxygen and hydrogen velocity correlation functions are also calculated, and the corresponding molecular diffusion coefficient is in good accord with existing theoretical estimates including quantum effects. Of most interest, an ab initio quantum correction factor is obtained to correct the far IR spectrum of water. When corrected, a spectrum based on a classical simulation yields results that agree well with experiment. Combined with internal tests of consistency, these observations indicate that this quite flexible approach will be effective for a variety of molecular problems involving the dynamics of light nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.