Abstract

We present a systematic investigation of static and dynamic properties of block copolymer micelles with cross-linked cores, representing model polymer-grafted nanoparticles, over a wide concentration range from a dilute regime to an arrested (crystalline) state, by means of light and neutron scattering, complemented by linear viscoelasticity. We have followed the evolution of their scattering intensity and diffusion dynamics throughout the non-ergodicity transition, and the observed results have been contrasted against those of appropriately coarse-grained Langevin dynamics simulations. These stable model soft particles of the core–shell type are situated between ultrasoft stars and hard spheres, and the well-known star pair interaction potential is not appropriate to describe them. Instead, we have found that an effective brush interaction potential provides very satisfactory agreement between experiments and simulations, offering insights into the interplay of softness and dynamics in spherical colloidal suspensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.