Abstract

This paper presents a generic, scalable approach to obtain closed-form state-trajectory expressions for high-order (order > 2) lowpass sigma-delta (/spl Sigma//spl Delta/) modulators with distinct noise transfer function (NTF) zeros. Constant modulator input is assumed. The techniques of state-space diagonalization, continuous-time embedding, and Poincare map analysis are combined and extended. It is shown that an even-order modulator can be decomposed into individual second-order subsystems with circular trajectories about two half-plane centers, while an odd-order modulator will result in an additional first-order subsystem represented by an oscillating quantity. The trajectory and half-plane transition expressions thus obtained provide effective tools for stability analysis of /spl Sigma//spl Delta/ modulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.