Abstract

The cost effective benefits of process monitoring will never be over emphasised. Amongst monitoring techniques, the Independent Component Analysis (ICA) is an efficient tool to reveal hidden factors from process measurements, which follow non-Gaussian distributions. Conventionally, most ICA algorithms adopt the Principal Component Analysis (PCA) as a pre-processing tool for dimension reduction and de-correlation before extracting the independent components (ICs). However, due to the static nature of the PCA, such algorithms are not suitable for dynamic process monitoring. The dynamic extension of the ICA (DICA), similar to the dynamic PCA, is able to deal with dynamic processes, however unsatisfactorily. On the other hand, the Canonical Variate Analysis(CVA) is an ideal tool for dynamic process monitoring, however is not sufficient for nonlinear systems where most measurements follow non-Gaussian distributions. To improve the performance of nonlinear dynamic process monitoring, a state space based ICA (SSICA) approach is proposed in this work. Unlike the conventional ICA, the proposed algorithm employs the CVA as a dimension reduction tool to construct a state space, from where statistically independent components are extracted for process monitoring. The proposed SSICA is applied to the Tennessee Eastman Process Plant as a case study. It shows that the new SSICA provides better monitoring performance and detect some faults earlier than other approaches, such as the DICA and the CVA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.