Abstract
In this paper, a tabular reinforcement learning (RL) method is proposed based on improved fuzzy min-max (FMM) neural network. The method is named FMM-RL. The FMM neural network is used to segment the state space of the RL problem. The aim is to solve the curse of dimensionality problem of RL. Furthermore, the speed of convergence is improved evidently. Regions of state space serve as the hyperboxes of FMM. The minimal and maximal points of the hyperbox are used to define the state space partition boundaries. During the training of FMM neural network, the state space is partitioned via operations on hyperbox. Therefore, a favorable generalization performance of state space can be obtained. Finally, the method of this paper is applied to learn behaviors for the reactive robot. The experiment shows that the algorithm can effectively solve the problem of navigation in a complicated unknown environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.