Abstract
This technical note addresses the UD factorization based Kalman filtering (KF) algorithms. Using this important class of numerically stable KF schemes, we extend its functionality and develop an elegant and simple method for computation of sensitivities of the system state to unknown parameters required in a variety of applications. For instance, it can be used for efficient calculations in sensitivity analysis and in gradient-search optimization algorithms for the maximum likelihood estimation. The new theory presented in this technical note is a solution to the problem formulated by Bierman in , which has been open since 1990s. As in the cited paper, our method avoids the standard approach based on the conventional KF (and its derivatives with respect to unknown system parameters) with its inherent numerical instabilities and, hence, improves the robustness of computations against roundoff errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.