Abstract

State-of-the-art techniques (SOTA) for motor imagery decoding have largely involved the use of common spatial patterns (CSP) and power spectral density (PSD), for feature extraction. Other frequency transforms, such as wavelets and empirical mode decomposition (EMD) have also been used but the aforementioned two have been the most popular. For classification, linear discriminant analysis (LDA) and support vector machines (SVM) have been mostly used. It is, however, worth investigating other approaches, such as deep learning, which offer a potential for improvement, but are not yet mainstream. Deep learning techniques based on neural networks (NNs) have been underexplored in motor imagery processing. Considering their success in other fields, which speaks to their potential for obtaining improved results over the SOTA, they should be explored for motor imagery decoding. This study takes a comparative approach in the use of deep learning as compared with the SOTA. From our findings, we infer that neural networks are suitable for motor imagery decoding and might be preferable over the SOTA. The use of specific feature extraction is also not as necessary as seen with SOTA approaches, though it might offer some gains in performance. Our results show a statistically significant improvement in decoding accuracies, up to 20% increase, with the use of NNs as compared with the SOTA. Also, we conclude that the use of crops for data augmentation might yield better results with shallow architectures as against deeper ones and that there might be other factors affecting the effectiveness of crops, needing further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.