Abstract

Research studies on quadrotors have recently drawn significant interest from academia and industry. Faults and failures handling are the major weaknesses of conventional quadrotor platforms; therefore, an innovative actuation mechanism was introduced to allow tilting the rotors. Tilting rotors of multirotor platforms provide high dexterity for flying between adjacent obstacles and assist the platforms in dealing with various failure scenarios. This paper reviews the state of the research on tilt-quadrotor platforms. Several platforms, software and hardware architectures, were discussed in the literature. Most of the latest developments were focused on conventional quadrotor modelling, combined with rotor tilting dynamics. On the other hand, controlling such platform was mainly studied using two types of controllers: Feedback Linearisation technique and Control Allocator. Recovery strategy in case of fault or failure has been covered extensively for conventional quadrotors, but very limited known work for tilt-quadrotor. This review concludes that the system dynamic modelling is relatively well covered compared to exploring new control techniques for more stringent requirements. However, recovery strategies as the main advantage of tilt-quadrotor platforms are not explored extensively and require more research attention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.