Abstract

This paper studies the parameter estimation problems of the nonlinear systems described by the bilinear state space models in the presence of disturbances. A bilinear state observer is designed for deriving identification algorithms to estimate the state variables using the input-output data. Based on the bilinear state observer, a novel gradient iterative algorithm is derived for estimating the parameters of the bilinear systems by means of the continuous mixed p-norm cost function. The gain at each iterative step adapts to the data quality so that the algorithm has good robustness to the noise disturbance. Furthermore, to improve the performance of the proposed algorithm, a dynamic moving window is designed which can update the dynamical data by removing the oldest data and adding the newest measurement data. A numerical example of identification of bilinear systems is presented to validate the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.