Abstract

This article addresses the state-estimation problem for linear and non-linear systems for the case in which prior knowledge is available in the form of an equality constraint. The equality-constrained Kalman filter (KF) is derived as the maximum-a-posteriori solution to the equality-constrained state-estimation problem for linear and Gaussian systems and is compared to alternative algorithms. Then, four novel algorithms for non-linear equality-constrained state estimation based on the unscented KF are presented, namely, the equality-constrained unscented KF, the projected unscented KF, the measurement-augmentation unscented KF, and the constrained unscented KF. Finally, these methods are compared on linear and non-linear examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.