Abstract

While it is a well-established finding that subjects' own names (SON) and familiar voices are salient during wakefulness, we here investigated processing of environmental stimuli during sleep including deep N3 and REM sleep. Besides the effects of sleep depth we investigated how sleep-specific EEG patterns (i.e. sleep spindles and slow oscillations [SOs]) relate to stimulus processing. Using 256-channel EEG we studied processing of auditory stimuli by means of event-related oscillatory responses (de-/synchronisation, ERD/ERS) and potentials (ERPs) in N = 17 healthy sleepers. We varied stimulus salience by manipulating subjective (SON vs. unfamiliar name) and paralinguistic emotional relevance (familiar vs. unfamiliar voice, FV/UFV). Results reveal that evaluation of voice familiarity continues during all NREM sleep stages and even REM sleep suggesting a ‘sentinel processing mode’ of the human brain in the absence of wake-like consciousness. Especially UFV stimuli elicit larger responses in a 1–15 Hz range suggesting they continue being salient. Beyond this, we find that sleep spindles and the negative slope of SOs attenuate information processing. However, unlike previously suggested they do not uniformly inhibit information processing, but inhibition seems to be scaled to stimulus salience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.