Abstract

ABSTRACTHorses stand for most of each day. Although they can use various leg configurations (postures), they usually stand with vertical legs. Why? We addressed this question with a 2D quasi-static model having three rigid parts: a trunk, massless fore-limbs and massless rear limbs, with hinges at the shoulders, hips, and hooves. The postural parameter we varied was ℓg, the distance between the hooves. For a given ℓg, statics finds an equilibrium configuration which, with no muscle stabilization (i.e. using minimal effort) is unstable. We assume a horse uses that configuration. To measure the neuromuscular effort needed to stabilize this equilibrium, we added springs at the shoulder and hip; the larger the springs needed to stabilize the model (kmin), the more neuromuscular effort needed to stabilize the posture. A canted-in posture (small ℓg), observed habitually in some domestic horses, needs about twice the spring stiffness (representing twice the effort) as is needed with vertical or slightly splayed-out (large ℓg) legs. This relationship of posture and stability might explain the prevalence of vertical or slightly splayed-out legs in wild and healthy domestic horses and leaves as a puzzle why some horses stand canted-in.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.