Abstract

AimStandardized modeling of cardiac arrest and cardiopulmonary resuscitation (CPR) is crucial to evaluate new treatment options. Experimental porcine models are ideal, closely mimicking human-like physiology. However, anteroposterior chest diameter differs significantly, being larger in pigs and thus poses a challenge to achieve adequate perfusion pressures and consequently hemodynamics during CPR, which are commonly achieved during human resuscitation. The aim was to prove that standardized resuscitation is feasible and renders adequate hemodynamics and perfusion in pigs, using a specifically designed resuscitation board for a pneumatic chest compression device. Methods and resultsA “porcine-fit” resuscitation board was designed for our experiments to optimally use a pneumatic compression device (LUCAS® II, Physio-Control Inc.), which is widely employed in emergency medicine and ideal in an experimental setting due to its high standardization. Asphyxial cardiac arrest was induced in 10 German hybrid landrace pigs and cardiopulmonary resuscitation was performed according to ERC/AHA 2015 guidelines with mechanical chest compressions. Hemodynamics were measured in the carotid and pulmonary artery. Furthermore, arterial blood gas was drawn to assess oxygenation and tissue perfusion.The custom-designed resuscitation board in combination with the LUCAS® device demonstrated highly sufficient performance regarding hemodynamics during CPR (mean arterial blood pressure, MAP 46 ± 1 mmHg and mean pulmonary artery pressure, mPAP of 36 ± 1 mmHg over the course of CPR). MAP returned to baseline values at 2 h after ROSC (80 ± 4 mmHg), requiring moderate doses of vasopressors. Furthermore, stroke volume and contractility were analyzed using pulse contour analysis (106 ± 3 ml and 1097 ± 22 mmHg/s during CPR). Blood gas analysis revealed CPR-typical changes, normalizing in the due course. Thermodilution parameters did not show persistent intravascular volume shift. ConclusionStandardized cardiopulmonary resuscitation is feasible in a porcine model, achieving adequate hemodynamics and consecutive tissue perfusion of consistent quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.