Abstract

Standard assembly time is an important piece of data in product development that is used to compare different product variants or manufacturing variants. In the presented approach, standard time is created with the use of a decision tree regarding standard manual and machine-manual operations, taking into consideration product characteristics and typical tools, equipment and layout. The analysed features include, among others: information determined during product development, such as product structure, parts characteristics (e.g. weight, size), connection type, as well as the information determined during assembly planning: tools (e.g. hand screw driver, power screw driver, pliers), equipment (e.g. press, heater), workstation layout (e.g. distance, way of feeding). The object-attribute-value (OAV) framework was applied for the assembly characteristic. An example of the decision tree application to predict standard assembly time was presented for a mechanical subassembly. The case study was dedicated to standard time prediction for a bearing assembly. The presented approach is particularly important for the enterprises which offer customized products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.