Abstract

Woodland restoration has been conducted in many countries, primarily in Mediterranean regions, but has only recently been attempted on publically and privately owned lands in the eastern United States. We reconstructed historical stand dynamics and tested the immediate effects of an oak (Quercus) woodland restoration treatment on forest health, inferred from tree-ring widths (TRW). The stands were upland white oak (Q. alba) and chestnut oak (Q. prinus) dominated and were located on the Cumberland Plateau of eastern Kentucky, USA. The stands regenerated primarily under a severe disturbance regime concurrent with peak industrial logging approximately 100years ago. A relatively high percentage of trees (38 percent) recruited under large canopy gaps or clearings, indicative of a severe disturbance; however, gap-phase dynamics was also an important process in oak recruitment to the canopy. Primarily small (<31cmDBH) and young (<110years old) trees were removed during the restoration treatment, and mean DBH of residual trees was 13cm larger than harvested trees. Residual trees were 22years older than harvested trees, but this difference was not significant. The largest and oldest trees represented important legacy trees that could provide desirable forest biodiversity attributes. Residual trees had larger TRWs than harvested trees, beginning in the 1930s, and these differences increased over time. Residual trees also had larger TRW during two recent drought events (1986 and 1999), but recovery following drought was similar between residual and harvested trees. Managers can use well established silvicultural techniques to obtain desired stand structural conditions, while selecting healthy trees that have better response to stress factors such as drought. The oak woodland restoration treatment may help to maintain residual overstory trees until oak regeneration can be recruited to provide sustainability towards the next generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.