Abstract
Computation of the spatial derivatives with nonlocal differential operators, such as the Fourier pseudospectral method, may cause strong numerical artifacts in the form of noncausal ringing. This situation happens when regular grids are used. The problem is attacked by using a staggered pseudospectral technique, with a different scheme for each rheological relation. The nature and causes of acausal ringing in regular grid methods and the reasons why staggered‐grid methods eliminate this problem are explained in papers by Fornberg (1990) and Özdenvar and McMechan (1996). Thus, the objective here is not to propose a new method but to develop the algorithm for the viscoelastic and transversely isotropic (VTI) wave equation, for which the technique can be implemented without interpolation. The algorithm is illustrated for one physical situation that requires very high accuracy, such as a fluid‐solid interface, where very large contrasts in material properties occur. The staggered‐grid solution is noise free in the dynamic range where regular grids generate artifacts that may have amplitudes similar to those of physical arrivals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.