Abstract
In tokamak disruptions where the magnetic connection length becomes comparable to or even shorter than the plasma mean-free-path, parallel transport can dominate the energy loss and the thermal quench of the core plasma goes through four phases (stages) that have distinct temperature ranges and durations. The main temperature drop occurs while the core plasma remains nearly collisionless, with the parallel electron temperature dropping in time t as and a cooling time that scales with the ion sound wave transit time over the length of the open magnetic field line. These surprising physics scalings are the result of effective suppression of parallel electron thermal conduction in an otherwise bounded, quasineutral, and collisionless plasma, which is different from what are known to date on electron thermal conduction along the magnetic field in a nearly collisionless and quasineural plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.