Abstract

Propagation of saturation overshoots for two-phase flow of immiscible and incompressible fluids in porous media is analyzed using different computational methods. In particular, it is investigated under which conditions a given saturation overshoot remains stable while moving through a porous medium. Two standard formulations are employed in this investigation, a fractional flow formulation and a pressure–saturation formulation. Neumann boundary conditions for pressure are shown to emulate flux boundary conditions in homogeneous media. Gravity driven flows with Dirichlet boundary conditions for pressure that model infiltration into heterogeneous media with position-dependent permeability are found to exhibit pronounced saturation overshoots very similar to those seen in experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.