Abstract
We establish the existence of smooth stable manifolds in Banach spaces for sufficiently small perturbations of a new type of dichotomy that we call nonuniform polynomial dichotomy. This new dichotomy is more restrictive in the “nonuniform part” but allow the “uniform part” to obey a polynomial law instead of an exponential (more restrictive) law. We consider two families of perturbations. For one of the families we obtain local Lipschitz stable manifolds and for the other family, assuming more restrictive conditions on the perturbations and its derivatives, we obtain C 1 global stable manifolds. Finally we present an example of a family of nonuniform polynomial dichotomies and apply our results to obtain stable manifolds for some perturbations of this family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.