Abstract

We consider the inverse problem of determining two non-constant coefficients in a nonlinear parabolic equation of the Fisher–Kolmogorov–Petrovsky–Piskunov type. For the equation ut = DΔu + μ(x) u − γ(x)u2 in (0, T) × Ω, which corresponds to a classical model of population dynamics in a bounded heterogeneous environment, our results give a stability inequality between the couple of coefficients (μ, γ) and some observations of the solution u. These observations consist in measurements of u: in the whole domain Ω at two fixed times, in a subset ω⊂⊂Ω during a finite time interval and on the boundary of Ω at all times t ∈ (0, T). The proof relies on parabolic estimates together with the parabolic maximum principle and Hopf’s lemma which enable us to use a Carleman inequality. This work extends previous studies on the stable determination of non-constant coefficients in parabolic equations, as it deals with two coefficients and with a nonlinear term. A consequence of our results is the uniqueness of the couple of coefficients (μ, γ), given the observation of u. This uniqueness result was obtained in a previous paper but in the one-dimensional case only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.