Abstract
All-solid-state batteries (ASSBs) employing Li-metal anodes and inorganic solid electrolytes are attracting great attention due to high safety and energy density for next-generation energy storage devices. However, the volume change of cathode active materials can cause contact loss, resulting in charge carrier isolation, heterogeneous current distribution, and poor electrochemical properties in ASSBs. Here, a simple, yet effective, solvent-free electrode engineering approach with polytetrafluoroethylene (PTFE) as a binder for ASSBs is reported, enabling intimate contact and stable interfaces with the cathode. It is substantiated that the crystallinity of PTFE can be controlled depending on the heat history, and highly crystalline PTFE displays robust mechanical properties. High-nickel LiNi0 . 8 Mn0.1 Co0.1 O2 cathode prepared with crystalline PTFE show improved cycle and rate performances in ASSBs. In addition, it is revealed that the intimate contact between cathode particles with a stable cathode electrolyte layer is maintained during cycling by postmortem studies. This simple engineering method can be applied to prepare cathodes with a variety of active materials and solid electrolytes in ASSBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.