Abstract
AbstractThe irreversible oxygen redox and the resulting structure degradation of LiCoO2 at a high voltage cause very poor cycling performance. Herein, the anionic redox chemistry in 4.6 V LiCoO2 cathode material through manipulating the oxygen magnetic moment (OMM) with oxygen vacancy and V doping is proposed to stabilize, and the relationship between OMM and the oxidation degree of oxygen is revealed. Oxygen vacancy induces the generation of OMM, and the synergy of oxygen vacancy and V doping reduces the change of OMM during charge/discharge processes. This mitigates the oxidation degree of oxygen and improves the reversibility of oxygen redox, which greatly inhibits the irreversible oxygen escape. The oxygen vacancies can further reduce the overlap of the electron clouds and lower the O 2p band center thus decreasing the oxygen redox activity. Moreover, the introduced V also increases the energy barrier of the phase transition and suppresses the irreversible phase transition and Co migration. The irreversible O2 release is significantly inhibited and the cycling stability at 4.6 V is largely enhanced. This study presents the relationship between OMM and the oxidation degree of oxygen and provides some insights into improving the anion redox reversibility through adjusting the oxygen magnetic moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.