Abstract

Cesium lead iodide (CsPbI3 ) perovskite has gained great attention due to its potential thermal stability and appropriate bandgap (≈1.73eV) for tandem cells. However, the moisture-induced thermodynamically unstable phase and large open-circuit voltage (VOC ) deficit and also the low efficiency seriously limit its further development. Herein, long chain phenylethylammonium (PEA) is utilized into CsPbI3 perovskite to stabilize the orthorhombic black perovskite phase (γ-CsPbI3 ) under ambient condition. Furthermore, the moderate lead acetate (Pb(OAc)2 ) is controlled to combine with phenylethylammonium iodide to form the 2D perovskite, which can dramatically suppress the charge recombination in CsPbI3 . Unprecedentedly, the resulted CsPbI3 solar cells achieve a 17% power conversion efficiency with a record VOC of 1.33V, the VOC deficit is only 0.38V, which is close to those in organic-inorganic perovskite solar cells (PSCs). Meanwhile, the PEA modified device maintains 94% of its initial efficiency after exceeding 2000 h of storage in the low-humidity controlled environment without encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.