Abstract

Every stationary action of a strongly irreducible lattice or commensurator of such a lattice in a general semisimple group, with at least one higher-rank connected factor, either has finite stabilizers almost surely or finite index stabilizers almost surely. Consequently, every minimal action of such a lattice on an infinite compact metric space is topologically free.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.