Abstract
The standard Galerkin method can be roughly described as being an approximation of the variational formulation of a PDE (or system of PDE’s) in a space of functions that is spanned by piecewise polynomials. This simple idea presents several advantages: first, the discrete system of equations that arise from such an approximation is going to be “banded” since the piecewise polynomials can be constructed to have a “small” support, and therefore the matrices involved are sparse. Second, taking derivatives and integrating polynomials is a very attractive task for any first year calculus student, and the simplicity of the implementation of the method for the most cumbersome PDE or system of PDE’s seems straightforward. Third, the mathematical analysis seems to be possible without a lot of sophistication (at least if we have an elliptic problem, and we disregard technicalities referring to domain shape, etc.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.