Abstract
We investigate dynamics of the homogeneous time-dependent SU(2) Yang-Mills fields governed by the non-Abelian Born-Infeld lagrangian which arises in superstring theory as a result of summation of all orders in the string slope parameter $\alpha'$. It is shown that generically the Born-Infeld dynamics is less chaotic than that in the ordinary Yang-Mills theory, and at high enough field strength the Yang-Mills chaos is stabilized. More generally, a smothering effect of the string non-locality on behavior of classical fields is conjectured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental and Theoretical Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.