Abstract

In divalent tin halides, when the halogen is small and highly electronegative (F, Cl), the tin valence orbitals are hybridized, the tin(II) non-bonded electron pair is located on one of the hybrid orbitals, and the resulting large electric field gradient gives a large quadrupole splitting. The reaction of barium chloride and tin difluoride in aqueous solutions, for large BaCl2.2H2O/SnF2 ratios (>10) results in the precipitation of a white powdered material, which is identified by X-ray diffraction to be BaCIF. However, Tin-119 Mossbauer spectroscopy shows the material contains a fairly large amount of divalent tin in the Sn2+ ionic form, with unhybridized orbitals, like in SnCl2. Using X-ray diffraction, we have established that Sn2+ ions substitute 15% of the Ba2+ ions at random, and chemical analysis shows the material has the formula Ba5.66SnCl7.30F6.04 and thus is enriched in chlorine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.