Abstract

We introduce a two-dimensional lattice model of immobilization and stabilization of proteinlike polymers using grafted polymers. The protein is designed to have a specific bulk conformation reproducing a catalytic cleft of natural enzymes. Our model predicts a first order denaturing adsorption transition of free proteins. On the other hand, for an immobilized protein we observe a more gradual disappearance of the hydrophobic centers accompanied by adsorption. We show that, using hydrophilic grafted polymers of proper length and grafting density, the conformation as well as the hydrophobic centers of the protein can be restored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.