Abstract
We apply a laser and two nearly degenerate microwave fields upon an ensemble of nitrogen-vacancy centers in diamond and observe magnetic resonance structures with two-component, composite shapes of nested Lorentzians with different widths. One component of them undergoes regular power-broadening, whereas the linewidth of the other one becomes power-independent and undergoes field-induced stabilization. We show that the observed width stabilization is a general phenomenon that results from competition between coherent driving and non-conservation of populations that occur in open systems. The phenomenon is interpreted in terms of specific combinations of state populations that play the role of bright and dark states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.