Abstract
To improve the solid-electrolyte/electrode interface compatibility, we have proposed the concept of hybrid electrolyte by including a small amount of liquid electrolyte in between. In this work, n-BuLi, a superbase, has been found to significantly improve the cycling performance of LiFePO4/Li hybrid cells containing Li7La3Zr1.5Ta0.5O12 (LLZT) and conventional carbonate-based liquid electrolyte. The modified cells have been cycled for 400 cycles at 100 and 200 μA cm-2 at room temperature, indicating excellent solid/liquid electrolyte interface stability. The role of n-BuLi may be 3-fold: to retard the decomposition reaction of LE, to suppress the Li+/H+ exchange, and to lithiate the garnet/LE interface, inhibiting side reactions and enhancing interfacial lithium-ion transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.