Abstract

Many methods have been proposed for the stabilization of higher index differential-algebraic equations (DAEs). Such methods often involve constraint differentiation and problem stabilization, thus obtaining a stabilized index reduction. A popular method is Baumgarte stabilization, but the choice of parameters to make it robust is unclear in practice. Here we explain why the Baumgarte method may run into trouble. We then show how to improve it. We further develop a unifying theory for stabilization methods which includes many of the various techniques proposed in the literature. Our approach is to (i) consider stabilization of ODEs with invariants, (ii) discretize the stabilizing term in a simple way, generally different from the ODE discretization, and (iii) use orthogonal projections whenever possible. The best methods thus obtained are related to methods of coordinate projection. We discuss them and make concrete algorithmic suggestions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.