Abstract

High energy pulses of a CO 2 laser are focused in a parabolic mirror yielding to a laser-supported detonation. The generated thrust acting on the reflector as a bell nozzle is studied in multiple pulse free flight experiments with respect to axial, lateral and angular momentum coupling. The employment of an ignition pin on the reflector's axis of symmetry lowering the ignition threshold by several orders of magnitude is found to provide for a reproducible detonation process. The axial momentum coupling of each pulse is analyzed with respect to initial lateral offset and tilt during the flight. High speed analyses of recorded flights indicate that lateral momentum components occur re-centering the thruster on the beam. Thrust vector steering can be realized by tilt of the ignition pin inside the thruster, thus shifting the detonation. A design model of a laser-driven rocket including a remotely accessible steering gear was developed and tested successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.