Abstract

Surface segregation process of dissolved elements on a Fe(1 0 0) surface and the initial oxidation processes of the sulfur segregated surfaces were studied in situ by AES and RHEED. The surface enrichment of sulfur has formed a c(2×2) superstructure at elevated temperatures. The Fe(1 0 0)c(2×2)-S surface was found to have stabilization effect against initial oxidation. The retardation of oxidation was most enhanced when the sulfur surface concentration reached at the saturation coverage (1/2 ML). The possible physical origins of the stabilization effect are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.