Abstract

To evaluate the in vitro physicochemical stability of oxaliplatin and doxorubicin when the in vivo hyperthermic intraperitoneal conditions are reproduced. Three solutions were prepared, A (oxaliplatin 200 mg/L), B(doxorubicin 15 mg/L) and C (oxaliplatin 200 mg/L with doxorubicin 15mg/L) in glucose 5%. The three solutions were subjected to the maximum temperature reached in vivo (49° C) for two hours. Physical stability was focused on visual control of particles or precipitates in solutions, discharge of gases, odor and color. Samples were taken every 15 minutes and the chemical stability was evaluated by determining the concentration of oxaliplatin and doxorubicin remaining in the samples. Oxaliplatin concentrations were determined by atomic absorption graphite chamber while doxorubicin was determined by high performance liquid chromatography.The chemical stability criteria selected was the one described by the American Pharmacopoeia, which sets a permissible variation range between the 90-110% of the initial concentration. During the assay there was no appearance of particles, precipitates in the samples, discharge of gases, nor colour changes in the solutions. The samples showed a remaining concentration of oxaliplatin and doxorubicin within the 90-110% limit. The stability of the samples that follow to two cycles of freeze-thaw after hyperthermia was also found within the specified limits. A, B and c solutions in 5% glucose, are physically and chemically stable at 49° C for two hours. Under these conditions, these solutions could be used with guarantees of stability in patients with peritoneal carcinomatosis subsidiary of intraperitoneal hyperthermic chemotherapy based in these antineoplastic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.