Abstract

We investigate the local and global dynamics of two 1-Dimensional (1D) Hamiltonian lattices whose inter-particle forces are derived from nonanalytic potentials. In particular, we study the dynamics of a model governed by a “graphene-type” force law and one inspired by Hollomon’s law describing “work-hardening” effects in certain elastic materials. Our main aim is to show that, although similarities with the analytic case exist, some of the local and global stability properties of nonanalytic potentials are very different than those encountered in systems with polynomial interactions, as in the case of 1D Fermi–Pasta–Ulam–Tsingou (FPUT) lattices. Our approach is to study the motion in the neighborhood of simple periodic orbits representing continuations of normal modes of the corresponding linear system, as the number of particles [Formula: see text] and the total energy [Formula: see text] are increased. We find that the graphene-type model is remarkably stable up to escape energy levels where breakdown is expected, while the Hollomon lattice never breaks, yet is unstable at low energies and only attains stability at energies where the harmonic force becomes dominant. We suggest that, since our results hold for large [Formula: see text], it would be interesting to study analogous phenomena in the continuum limit where 1D lattices become strings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.