Abstract
A theoretical study of the (H2O)2 dimer has been carried out in which the lowest S1 and T1 excited electronic states of the dimer complex, the influence of hydrogen bond formation on the shift in the maximum of the absorption band, and the stability of the dimer complex in the ground and excited states have been examined. It was found that there is only a single global maximum for the system — a nonplanar dimer complex formed by a linear hydrogen bond. Cyclic and bifurcated structures are transition states which do not form stable configurations when electronically excited. For the structure having a minimum in the ground electronic state, two nondissociating S1 and T1 states were found with bond energies of 2.0 and 4.4 kcal/mole, respectively. Formation of hydrogen bonds leads to a shift in the absorption maximum to the blue region with respect to the monomer. The hydrogen bond was found to weaken in the excited electronic states of the dimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.