Abstract

The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.