Abstract

We study a reaction-diffusion system with four morphogens which has been suggested in [H. Takagi and K. Kaneko, Europhys. Lett., 56 (2001), pp. 145–151]. This system is a generalization of the Gray–Scott model [P. Gray and S. K. Scott, Chem. Eng. Sci., 38 (1983), pp. 29–43; 39 (1984), pp. 1087–1097] and allows for multiple activators and multiple substrates. We construct single-spike solutions on the real line and establish their stability properties in terms of conditions of connection matrices which describe the interaction of the components. We use a rigorous analysis for the linearized operator around single-spike solutions based on nonlocal eigenvalue problems and generalized hypergeometric functions. The following results are established for two activators and two substrates: Spiky solutions may be stable or unstable, depending on the type and strength of the interaction of the morphogens. In particular, it is shown that these patterns are stabilized in the following two cases. Case 1: interaction of different activators with each other (off-diagonal interaction of activators). Case 2: variation in strength of interaction of activators with different substrates (e.g., each activator has its preferred substrate).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.