Abstract

Linear stability analysis is used to predict the onset of instabilities in inertialess viscoelastic planar stagnation flow. Beyond a critical value of the dimensionless flow rate, or Deborah number, the creeping base flow of similarity type, which is valid in the limit of vanishingly small Reynolds numbers, becomes unstable to localized three-dimensional disturbances. Stability calculations of the local similarity type viscoelastic flow in a small region near the stagnation plane are reported for the quasi-linear Oldroyd-B constitutive equation. The stability results for a range of Deborah numbers and viscosity ratio are presented to explore systematically the effects of elasticity and other rheological properties. The onset of instability and the temporal and spatial characteristics of the secondary flow predicted here resemble other purely elastic instabilities measured and predicted for viscoelastic flows in other simple and complex geometries with curved streamlines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.