Abstract

This paper presents dynamic modelling of peripheral milling systems with axially varying dynamics. The end mill is divided into differential elements along the cutter axis, and discrete nodes are assigned along the axial depth of cut. The cutting forces, which include regenerative and process damping components, are distributed to nodes. The equation of motion is transformed into modal space as periodic, delayed differential equations which cover one tooth period for regular, and one spindle period for variable pitch cutters. The directional coefficients are averaged and the stability is solved in frequency domain using Nyquist criterion. The presented model is experimentally verified in peripheral milling tests with low radial and high axial depth of cut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.