Abstract

We study many-body localization (MBL) transition in disordered Floquet systems using a polynomially filtered exact diagonalization (POLFED) algorithm. We focus on disordered kicked Ising model and quantitatively demonstrate that finite-size effects at the MBL transition are less severe than in the random field XXZ spin chains widely studied in the context of MBL. Our conclusions extend also to other disordered Floquet models, indicating smaller finite-size effects than those observed in the usually considered disordered autonomous spin chains. We observe consistent signatures of the transition to MBL phase for several indicators of ergodicity breaking in the kicked Ising model. Moreover, we show that an assumption of a power-law divergence of the correlation length at the MBL transition yields a critical exponent $\ensuremath{\nu}\ensuremath{\approx}2$, consistent with the Harris criterion for one-dimensional disordered systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.