Abstract
Using the fixed point method, we investigate the generalized Hyers–Ulam stability of the ternary homomorphisms and ternary derivations between fuzzy ternary Banach algebras for the additive functional equation of n-Apollonius type, namely $${\sum_{i=1}^{n} f(z-x_{i}) = -\frac{1}{n} \sum_{1 \leq i < j \leq n} f(x_{i}+x_{j}) + n f (z-\frac{1}{n^{2}} \sum_{i=1}^{n}x_{i}),}$$ where \({n \geq 2}\) is a fixed positive integer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.